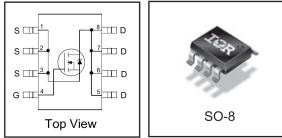
PD - 95283

International **tern** Rectifier

Applications


- High frequency DC-DC converters
- Lead-Free

IRF7488PbF HEXFET[®] Power MOSFET

V_{DSS} R_{DS(on)} max Q_g 80V 29mΩ@V_{GS}=10V 38nC

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	80	V
V _{GS}	Gate-to-Source Voltage	± 20]
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	6.3	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	5.0	A
I _{DM}	Pulsed Drain Current [®]	50	
P _D @T _A = 25°C	Maximum Power Dissipation	2.5	W
P _D @T _A = 70°C	Maximum Power Dissipation	1.6	
	Linear Derating Factor	20	mW/°C
TJ	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)]

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{0JL}	Junction-to-Drain Lead		20	
R _{0JA}	Junction-to-Ambient ④		50	°C/W

Notes ① through ④ are on page 9

IRF7488PbF

International **TOR** Rectifier

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	80			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.089		V/°C	Reference to 25°C, I _D = 1mA ③
R _{DS(on)}	Static Drain-to-Source On-Resistance		24	29	mΩ	V _{GS} = 10V, I _D = 3.8A ③
V _{GS(th)}	Gate Threshold Voltage	2.0	—	4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
Inco Drain-to-Source Leakage Cu	Drain-to-Source Leakage Current			20	μA	V _{DS} = 80V, V _{GS} = 0V
DSS	Stain-to-Source Leakage Surrent			250		$V_{DS} = 64V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
1	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
GSS	Gate-to-Source Reverse Leakage		—	-200		V _{GS} = -20V

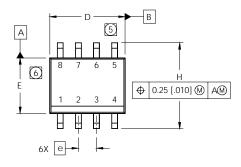
Static @ T_J = 25°C (unless otherwise specified)

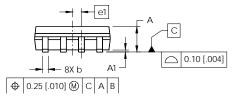
Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	9.3			S	V _{DS} = 15V, I _D = 3.8A
Qg	Total Gate Charge		38	57		I _D = 3.8A
Q _{gs}	Gate-to-Source Charge	—	9.1		nC	$V_{DS} = 40V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		12			V _{GS} = 10V,
t _{d(on)}	Turn-On Delay Time		13			$V_{DD} = 40V$
t _r	Rise Time		12		ns	I _D = 3.8A
t _{d(off)}	Turn-Off Delay Time		44			R _G = 9.1Ω
t _f	Fall Time		16			V _{GS} = 10V ③
Ciss	Input Capacitance		1680	-		V _{GS} = 0V
Coss	Output Capacitance		270	_		$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		32		pF	f = 1.0 MHz
Coss	Output Capacitance		1760			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		170			$V_{GS} = 0V, V_{DS} = 64V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		340			V_{GS} = 0V, V_{DS} = 0V to 64V \odot

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy [®]		96	mJ
I _{AR}	Avalanche Current①		3.8	A

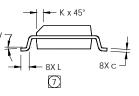

Diode Characteristics


	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			2.3		MOSFET symbol
	(Body Diode)			2.3	A	showing the
I _{SM}	Pulsed Source Current				integral reverse	
	(Body Diode) ① 50	50		p-n junction diode.		
V_{SD}	Diode Forward Voltage	_		1.3	V	$T_J = 25^{\circ}C, I_S = 3.8A, V_{GS} = 0V$ (3)
t _{rr}	Reverse Recovery Time		65	98	ns	T _J = 25°C, I _F = 3.8A
Q _{rr}	Reverse RecoveryCharge		190	290	nC	di/dt = 100A/µs ③
2			-			

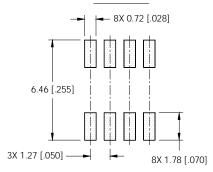
IRF7488PbF

SO-8 Package Outline

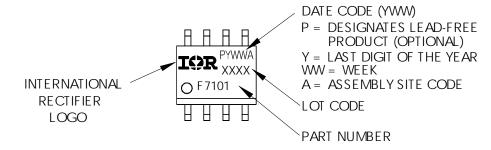
Dimensions are shown in millimeters (inches)



NOTES:

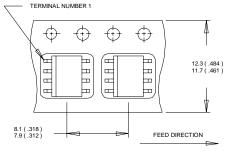

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO ASUBSTRATE.

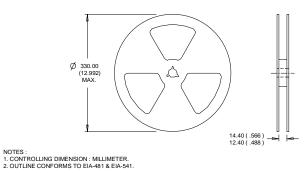
DIM	INC	HES	MILLIM	ETERS	
DIIVI	MIN	MAX	MIN	MAX	
А	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 BASIC		1.27 BASIC		
e1	.025 B.	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
К	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0°	8°	0°	8°	



FOOTPRINT

SO-8 Part Marking


EXAMPLE: THIS IS AN IRF7101 (MOSFET)


IRF7488PbF

International **TOR** Rectifier

SO-8 Tape and Reel

NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

- $\ensuremath{\textcircled{}}$ Repetitive rating; pulse width limited by max. junction temperature.
- \odot Starting T_J = 25°C, L = 13mH $R_G = 25\Omega$, $I_{AS} = 3.8A$.

③ Pulse width \leq 300µs; duty cycle \leq 2%.

④ When mounted on 1 inch square copper board

 $\ensuremath{\textcircled{O}}$ Coss eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

